Wir verwenden Cookies, um Ihnen die bestmögliche Nutzererfahrung auf unserer Website zu bieten und erlauben das Setzen von Drittanbieter-Cookies. Durch die Nutzung unserer Website stimmen Sie zu, dass Cookies auf Ihrem Gerät gespeichert werden. Weitere Informationen zu den verwendeten Cookies, und zu ihrer Deaktivierung finden Sie hier.
leerquadrat
Merkzettel
Merkzettel
Warenkorb
 (0)
Warenkorb
Literatur   |   Sachbuch   |   Fachbuch   |   eBook   |   Papier   |   TU-Fanartikel   |   Geekstuff
Suche
zur Trefferliste

Number Fields


von Marcus, Daniel A.
Taschenbuch
XVIII, 203 Seiten; 23.5 cm x 15.5 cm
2018 Springer International Publishing
ISBN 978-3-319-90232-6
lieferbar
lagernd: Filiale Wiedner Hauptstr. 6


Preis: 41.79 EUR (inkl.USt.) 
in den Warenkorb  |  auf den Merkzettel



Hauptbeschreibung

Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.




Langtext
Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, "down-to-earth" manner. It thus avoids local methods, for example, and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.

Inhaltsverzeichnis
1: A Special Case of Fermat?s Conjecture.- 2: Number Fields and Number Rings.- 3: Prime Decomposition in Number Rings.- 4: Galois Theory Applied to Prime Decomposition.- 5: The Ideal Class Group and the Unit Group.- 6: The Distribution of Ideals in a Number Ring.- 7: The Dedekind Zeta Function and the Class Number Formula.- 8: The Distribution of Primes and an Introduction to Class Field Theory.- Appendix A: Commutative Rings and Ideals.- Appendix B: Galois Theory for Subfields of C.- Appendix C: Finite Fields and Rings.- Appendix D: Two Pages of Primes.- Further Reading.- Index of Theorems.- List of Symbols.

Biografische Anmerkung zu den Verfassern

Daniel A. Marcus received his PhD from Harvard University in 1972. He was a J. Willard Gibbs Instructor at Yale University from 1972 to 1974 and Professor of Mathematics at California State Polytechnic University, Pomona, from 1979 to 2004. He published research papers in the areas of graph theory, number theory and combinatorics. The present book grew out of a lecture course given by the author at Yale University.

science4kids
INTU Veranstaltungen
INTU Paper
INTU.newsletter Hier geht es zur Anmeldung.
Aktuelles, Veranstaltungen und Angebote
Facebook
Pintarest
Instagram
INTU.books
INTU.books und shop
INTU.paper